Transposase

Transposases (TRs) are often referred as the enzymes codified in DNA transposons (Class II of transposable elements) involved in double-strand DNA transposition from one location to another in the host genome ("cut and paste" mechanism).

Generically, TRs are DNA-binding enzymes that catalyze “cut and paste” or “copy and paste” reactions to promote the movement of DNA sequences (Rice and Baker 2001). TRs belong to the polynucleotidyl transferase superfamily which includes RNase H, RuvC resolvase, RAG proteins and retroviral Integrases (Nesmelova and Hackett 2010).

Transposase enzymes are divided into several families based on the mechanism utilized during transposition (Nesmelova and Hackett 2010; Curcio and Derbyshire 2001; InterPro 2006):

  • Tyrosine (Y)-TRs
  • Serine (S)-TRs
  • Rolling-circle (RC), or Y2-TRs
  • Reverse transcriptases/endonucleaseses (RT/En)
  • DDE-TRs

DDE-TRs contain a characteristic triad of conserved amino acids: Asp (D), Asp (D) and Glu (E) (this third residue can also be Asp in some cases), and a common structural motif, RNase H-like fold, bringing these three residues into close proximity to form a catalytic pocket containing two divalent metal ions that assist in the various nucleophilic reactions during DNA cleavage (Hickman et al. 2005).

Transposase.png
3D structure the catalytic domain of Mos1 mariner TR adapted from the PDB-file 2F7T


DDE-TRs catalyze DNA sequence transposition after recognizing and joining to DNA-binding domains to form the synaptic protein-DNA complex. Then the mobilized DNA is excised by means of the hydrolysis of the phosphodiester bonds at each end to generate free 3′-OH groups. Finally, these free groups are joined to the target DNA sequence through a single-step transesterification.


Trmechanism3.png
Schematic representation of DDE TRs mechanism of transposition


Beyond this overall view and common shared features, DDE TRs, and TRs in general, show a great degree of variability at different levels. DNA-binding domain specific recognition, synaptic complex organization (dimeric, tetrameric…) and mechanisms of DNA cleavage and interaction can vary widely depending on the particular TR.




Welcome to the Gypsy Database (GyDB) an open editable database about the evolutionary relationship of viruses, mobile genetic elements (MGEs) and the genomic repeats where we invite all authors to contribute with their knowledge to improve and expand the topics.
Cite this project:

Llorens, C., Futami, R., Covelli, L., Dominguez-Escriba, L., Viu, J.M., Tamarit, D., Aguilar-Rodriguez, J. Vicente-Ripolles, M., Fuster, G., Bernet, G.P., Maumus, F., Munoz-Pomer, A., Sempere, J.M., LaTorre, A., Moya, A. (2011) The Gypsy Database (GyDB) of Mobile Genetic Elements: Release 2.0 Nucleic Acids Research (NARESE) 39 (suppl 1): D70-D74 doi: 10.1093/nar/gkq1061

Contact - Announcements - Acknowledgments - Terms of use and policy - Help - Donate
Donating legal disclaimer - Terms and conditions of the donation